При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин скалярная величина указана в строке:

1) перемещение

2) сила

3) импульс

4) скорость

5) работа

2. Мальчик крикнул, и эхо, отражённое от преграды, возвратилось к нему обратно через промежуток времени $\Delta t = 1,2$ с. Если модуль скорости звука в воздухе v = 0,330 км/с, то расстояние L от мальчика до преграды равно:

1) 0,66 км

2) 0,51 км

3) 0,40 км

4) 0,33 км

5) 0,20 км

3. По параллельным участкам соседних железнодорожных путей навстречу друг другу равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $v_1 = 70 \, \frac{{
m KM}}{{
m Y}},$ товарного – $V_2 = 38 \, \frac{{
m KM}}{{
m Y}}.$ Если пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени $\Delta t=18~\mathrm{c},$ то длина l товарного поезда равна:

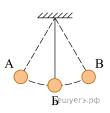
1) 0.40 км

2) 0,44 км

3) 0.50 км

4) 0.54 км

5) 0.60 км


4. Плотность вещества камня массы m=20 кг составляет $\rho_1=2.5\cdot 10^3$ кг/м 3 . Чтобы удержать камень в воде ($\rho_2 = 1.0 \cdot 10^3 \text{ кг/м}^3$), необходимо приложить силу, модуль F которой равен:

1) 0,30 кН

2) 0,24 кН 3) 0,20 кН

4) 0,12 κH

5. На рисунке изображен математический маятник, совершающего свободные незатухающие колебания между точками A и B. Если в положении A полная механическая энергия маятника $W = 12.0 \, \text{Дж}$, то в положении E она равна:

1) 0 Дж

2) 6,0 Дж

3) 12,0 Дж

4) 18,0 Дж

5) 24,0 Дж

6. В двух вертикальных сообщающихся сосудах находится ртуть (ρ_1 = 13,6 г/см³). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 6,8 см. Разность Δh уровней ртути в сосудах равна:

1) 8,8 мм

2) 7,3 mm

3) 6,0 mm

4) 5.0 MM

5) 3,0 mm

7. Установите соответствие между физической величиной и единицей её измерения:

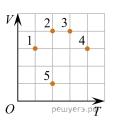
А) Молярная масса

1. кг/моль 2. Дж

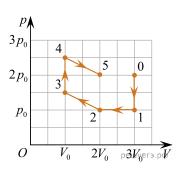
Б) Удельная теплота сгорания

3. Дж/кг

1) A3_{b2}

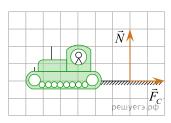

2) А2Б3

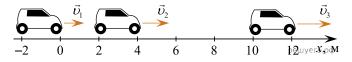
3) А2Б1


4) A1_{b2}

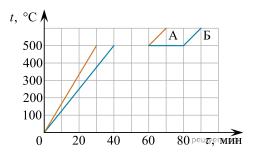
5) A153

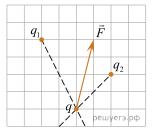
8. На $V\!-\!T$ диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

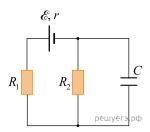

9. На p-V диаграмме изображён процесс $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, проведённый с одним молем газа. Положительную работу A газ совершил на участке:


5) килоомах

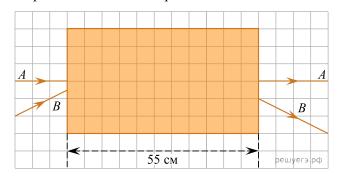
1)
$$0 \rightarrow 1$$
 2) $1 \rightarrow 2$ 3) $2 \rightarrow 3$ 4) $3 \rightarrow 4$ 5) $4 \rightarrow 5$


- 10. Мощность электромобиля измеряется в:
 - 1) киловаттах 2) киловольтах 3) килоамперах 4) киловатт-часах
- 11. Парашютист совершил прыжок с высоты h над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=4,0$ с парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Дальнейшее снижение парашютиста до момента приземления происходило в течение промежутка времени $\Delta t_2=80,0$ с с постоянной вертикальной скоростью, модуль которой $\upsilon=36,0$ $\frac{\mathrm{KM}}{\mathrm{Y}}$. Высота h, с которой парашютист совершил прыжок, равна ... м.
- **12.** При боронировании горизонтального участка поля трактор движется с постоянной скоростью. На рисунке изображены нормальная составляющая силы реакции \vec{N} грунта и сила сопротивления движению, действующие на борону. Если сила \vec{F} , с которой трактор тянет борону направлена горизонтально, а модуль этой силы $\vec{F}=400\,$ H, то масса m бороны равна ... **КГ**.

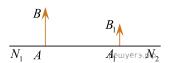

- **13.** На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00$ г/см³), равный ... см³.
- **14.** На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t=1.8$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля υ_x на ось Ox была равна ... км/ч.


- **15.** В баллоне находится идеальный газ. После того как из баллона выпустили некоторую массу газа и понизили абсолютную температуру оставшегося газа так, что она стала на $\alpha = 20,0$ % меньше первоначальной, давление газа в баллоне уменьшилось на $\beta = 40,0$ %. Если в конечном состоянии масса газа $m_2 = 600$ г, то в начальном состоянии масса газа m_1 была равна ... г.
- 17. Два образца А и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец А имеет массу $m_{\rm A}=4,5~{\rm K}\Gamma$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.

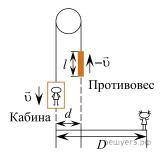
18. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд q_1 = -24 нКл, то модуль заряда q_2 равен ...нКл.

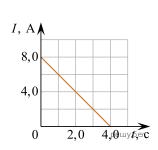


19. Электрическая цепь состоит из источника постоянного тока с ЭДС ε = 120 В и с внутренним сопротивлением r = 2,0 Ом, конденсатора ёмкостью C = 0,60 мкФ и двух резисторов (см. рис.). Если сопротивления резисторов R_1 = R_2 = 5,0 Ом, то заряд q конденсатора равен ... **мкКл**.



- **20.** Тонкое проволочное кольцо радиусом r = 3.0 см и массой m = 98.6 мг, изготовленное из проводника сопротивлением R = 81 мОм, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 2.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 3.0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Максимальное напряжение на конденсаторе контура U_0 = 3,0 В, максимальная сила тока в катушке I_0 = 1,2 мА. Если индуктивность катушки L = 75 мГн, то ёмкость C конденсатора равна ... нФ.


22. На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.


23. Стрелка AB высотой H=3,0 см и её изображение A_1B_1 высотой h=2,0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7,0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=12 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=3,1 м, движущегося на расстоянии d=2,6 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=2,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите в сантиметрах в секунду.

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{H\cdot c}{M}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{M}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью $L=1{,}03$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2},$ то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.